Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopuslaevis embryos

نویسندگان

  • Ayesha D Carter
  • Jill C Sible
چکیده

Prior to the midblastula transition (MBT), Xenopus laevis embryos do not engage cell cycle checkpoints, although overexpression of the kinase XChk1 arrests cell divisions. At the MBT, XChk1 transiently activates and promotes cell cycle lengthening. In this study, endogenous XChk1 was inhibited by the expression of dominant-negative XChk1 (DN-XChk1). Development appeared normal until the early gastrula stage, when cells lost attachments and chromatin condensed. TUNEL and caspase assays indicated these embryos died by apoptosis during gastrulation. Embryos with unreplicated DNA likewise died by apoptosis. Embryos expressing DN-XChk1 proceeded through additional rapid rounds of DNA replication but initiated zygotic transcription on schedule. Therefore, XChk1 is essential in the early Xenopus embryo for cell cycle remodeling and for survival after the MBT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissection of the XChk1 signaling pathway in Xenopus laevis embryos.

Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior ...

متن کامل

The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage.

Apoptosis is controlled by a complex interplay between regulatory proteins. Previous work has shown that Xenopus embryos remove damaged cells by apoptosis when irradiated before, but not after, the midblastula transition (MBT). Here we demonstrate that Akt/protein kinase B is activated and mediates an antiapoptotic signal only in embryos irradiated after the MBT. In addition, an increase in xBc...

متن کامل

DNA sequence-specific binding activity of the heat-shock transcription factor is heat-inducible before the midblastula transition of early Xenopus development.

We have examined the activity of the Xenopus heat-shock transcription factor (HSF) in extracts from stressed and unstressed embryos at various stages of development using DNA mobility shift analysis. A specific interaction between HSF and a synthetic oligonucleotide corresponding to the proximal heat-shock element (HSE) of the Xenopus HSP70B gene was greatly enhanced in heat-shocked embryos com...

متن کامل

Osmolarity and composition of cell culture media affect further development and survival in zebrafish embryos.

With the aim of carrying out chimaerism and somatic cell-midblastula transition (MBT) embryos co-culture experiments in freshwater fish species, we evaluated the effect of osmolarity and composition of two media commonly used in cell fish culture on MBT zebrafish embryos and their further development and survival. To this end, wild zebrafish dechorionated embryos in midblastula stage were cultu...

متن کامل

Maternally-preset program of apoptosis and caspases involved in execution of the apoptosis at midblastula transition (MBT) but not before in Xenopus laevis embryogenesis

To study gene control mechanisms in Xenopus embryos, we analyzed polyamines, cloned SAMDC (Sadenosylmethionine decarboxylase), a key enzyme of polyamine metabolism, and microinjected its mRNA into Xenopus fertilized eggs. The microinjection induced a large increase in SAMDC activity, exhaustion of the substrate SAM (S-adenosylmethionine), and execution of apoptosis at the stage called midblastu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2003